
RESEARCH REPORTFor reprint orders, please contact:
reprints@futuremedicine.com
Assessing performance of prediction rules in 
machine learning

Rory Martin1† & 
Kai Yu2,3

†Author for correspondence
1Millennium 
Pharmaceuticals, 
Cambridge MA 02139, USA
E-mail: rory.martin.phd@
gmail.com
2Washington University, 
St. Louis, MO 63110, USA
3Current address: 
National Cancer Institute, 
Division of Cancer 
Epidemiology and Genetics, 
Bethesda MD 20892, USA
Keywords: bootstrap, 
machine learning, Monte 
Carlo simulation, prediction 
rule, split sample, stochastic 
gradient boosting, true error
10.2217/14622416.7.4.543 © 2
Introduction: An important goal in machine learning is to assess the degree to which 
prediction rules are robust and replicable, since these rules are used for decision making 
and for planning follow-up studies. This requires an estimate of a prediction rule's true 
error rate, a statistic that can be estimated by resampling data. However, there are many 
possible approaches depending upon whether we draw observations with or without 
replacement, or sample once, repeatedly, or not at all, and the pros and cons of each are 
often unclear. This study illustrates and compares different methods for estimating true 
error with the aim of providing practical guidance to users of machine learning techniques. 
Methods: We conducted Monte Carlo simulation studies using four different error 
estimators: bootstrap, split sample, resubstitution and a direct estimate of true error. Here, 
'split sample' refers to a single random partition of the data into a pair of training and test 
samples, a popular scheme. We used stochastic gradient boosting as a learning algorithm, 
and considered data from two studies for which the underlying data mechanism was 
known to be complex: a library of 6000 tripeptide substrates collected for analysis of 
proteasome inhibition as part of anticancer drug design, and a cardiovascular study 
involving 600 subjects receiving antiplatelet treatment for acute coronary syndrome. 
Results: There were important differences in the performance of the various error 
estimators examined. Error estimators for split sample and resubstitution, while being the 
most transparent in action and the simplest to apply, did not quantify the performance of 
prediction rules as accurately as the bootstrap. This was true for both types of study data, 
despite their highly different nature. Conclusions: The robustness and reliability of 
decisions based on analysis of genomics data could, in many cases, be improved by 
following best practices for prediction error estimation. For this, techniques such as 
bootstrap should be considered.
Predictive performance has been described as a
guiding principle for selecting a prediction
rule [1]. Not only does it quantify our degree of
belief that conclusions based on a model are
robust and replicable, but it facilitates compari-
sons between different hypotheses (for example,
interactions present/absent), different machine
learning methods (for example, one tree versus
an ensemble of them), and different experimen-
tal designs. Being able to reliably quantify confi-
dence in a prediction rule is highly important
since one of the potential pitfalls of machine
learners is they always generate a prediction rule.

A theoretical ideal for measuring predictive
performance is the true error rate [2] of the pre-
diction rule. Given a sample S drawn from some
distribution F, with inputs x and observed
response y, the true error rate of a prediction rule
MS( ) fitted to S is:

(1) Expectation{Err(y, MS(x))}, over (x,y)
drawn from F

where MS(x) is a predicted response, and Err(•) is
an error function comparing observed vs pre-
dicted response. Examples include 0–1 loss for
binary response and squared error for continu-
ous response [3]. Equation (1) is a conditional
generalization error, conditioned upon having
chosen S as the training sample [2].

In practical terms, true error is not a directly
useful quantity, since the very large and inde-
pendent sample it demands is rarely, if ever, avail-
able in real-world studies. However, a number of
estimators are available that seek to approximate
true error. These include the bootstrap, split sam-
ple and resubstitution. We now describe each
method briefly, and compare their strengths and
weaknesses (see [2] for theoretical details).

The resubstitution error rate (sometimes
called apparent error) is formed by taking the
sample S and dropping it back through the rule
MS( ) that was fitted to it. Resubstitution is
highly attractive because of its economy and
006 Future Medicine Ltd  ISSN 1462-2416 Pharmacogenomics (2006)  7(4), 543–550 543



RESEARCH REPORT – Martin & Yu 

544
simplicity: 100% of the data are used for model
training, and there are no tuning parameters
involved constructing the error estimator. Its
Achille's heel is its downwards bias as an estima-
tor of true error, causing it to paint an overly
optimistic picture of predictive performance (for
more details, see [2]).

Split sample is a commonly used technique in
which a single randomized partition is used to
divide the sample into two parts – a training
sample used to fit the rule and a test sample with
which the rule's performance is quantified. In
our experience, split sample has very wide appeal
and usage among all types of scientists. Its appeal
is threefold. First, it is quick to perform. Second,
there is maximal clarity regarding the role of
data: each datum is used either to train the rule
or to test it (but never both). Third, and possibly
most importantly, the method is perceived as
impartial, since the test sample (once chosen)
can be kept under lock and key.

Completing our offering of sampling methods
is the bootstrap [2,4]. A point in favor of the boot-
strap is its theoretical motivation, with the method
described as a nonparametric maximum likeli-
hood approach. It forms an empirical distribution
– a probability distribution formed directly from a
sample’s data points, rather than specified as a
mathematical function – by placing a probability
mass of 1/n on each of the n observations in sam-
ple S, then uses this empirical distribution as a sur-
rogate for the underlying, but unknown
population distribution F. Observations are drawn
with replacement to create a replicate sample Si,
and the process is repeated 100 or so times to form
a bootstrap ensemble of such samples.

Despite its theoretical attraction and published
studies establishing its performance versus other
sampling methods (see for example [2,4]) the
bootstrap is often viewed with suspicion. Aside
from the fact it is more complicated to imple-
ment and takes much greater computational
effort to run, each observation plays dual roles in
a bootstrap, being in turn a member of both
training and testing samples. In layman’s terms, a
bootstrap appears to some to be a free lunch.

Furthermore, we normally perform a finesse
when constructing a bootstrap estimator of true
error. For resubstitution, the final model (rule)
that we choose for future prediction and for
extracting knowledge about system behavior is the
same model used to estimate error. In contrast, the
ensemble of models created during bootstrap are
fitted afresh and act as a surrogate for the final
model fitted to the entire sample. Of course, the

same kind of finesse is also used for the split sam-
ple approach and for other estimators, such as
cross-validation.

When discussing these points with collabora-
tors whose expertise lay in areas other than
mathematics, we found ourselves advocating the
use of bootstrap estimators, but facing pushback
due to the perception that advantages of simpler
methods such as impartiality had been lost, with
an uncertain gain. Furthermore, differences
between approaches were multifactorial, with it
being possible to resample once, repeatedly, or
not at all, to draw observations with replacement
or without, and to put various degrees of effort
on training a model versus testing it.

In order to try and clarify the situation, we
decided to answer the following question: in situ-
ations representative of the complicated data we
routinely have to study, what practical differences
are there between these competing estimators? To
answer this question, we designed Monte Carlo
simulation experiments based on real data from
two in-house studies to compare the above error
estimators. The simulations were designed to
estimate the distributions for the various error
estimators, as opposed to single point estimates,
in the hope that these distributions would be
more informative.

In the following section we describe the design
of the simulation and indicate how various esti-
mators were constructed. We also provide an
overview of the two studies themselves and,
finally, we present our findings.

Methods
Monte Carlo simulation can be used to compare
different analysis strategies in situations in which
theoretical approaches are intractable. One way
of applying the technique is to construct a model
to generate synthetic data, but although this
gives fine control over data generated, it requires
explicit assumptions concerning how inputs are
functionally related to response. Such assump-
tions can be difficult to formulate in ways that
reflect behavior of real world systems.

A different approach for comparing analysis
strategies is to select a range of samples of data and
apply to each, in turn, the strategies under investi-
gation [5–7]. Although this approach guarantees
relevance of the data being studied (with careful
choice of sample) the drawback is that only point
estimates of the relevant statistics are generated.

For the current research we employ a hybrid
design that attempts to leverage advantages of
both approaches. Briefly, we use two different
Pharmacogenomics (2006)  7(4)



www.futuremedicine.com

Assessing performance of prediction rules in machine learning – RESEARCH REPORT
levels of sampling: the first generating an ensem-
ble of data sets that are used as baseline samples
to analyze, and a second level that is used to con-
struct various estimators of true error. Using this
design, we can use real data to compare error
estimators in terms of their distributions as
opposed to at specific points. A similar approach
has been used by Molinaro and co-authors [8] for
the study of binary response data.

We now describe our method in detail.

Simulation design
A schematic for the simulation design is shown in
Figure 1. The simulation involves two levels of
sampling. We start by choosing one of the two
data sets described below, and use it to define a
population from which all the first level sampling
is performed (Figure 1, ‘Sample S’, purple box).

For i = 1,...,n, we apply a randomized parti-
tion to sample S to create a pair of samples, a
baseline sample SBase(i) and an independent test
sample STest(i) (Figure 1, blue boxes). For a given i,
every observation in S is in one and only one of
SBase(i) and STest(i).

To each baseline sample SBase(i) a prediction
rule MBase(i) is fitted. The aim of the simulation
is to compare different ways of estimating this
rule’s error rate. We directly estimate the true
error of this rule by dropping the corresponding
independent test sample STest(i) through it, and
denote this error as ErrTrue(i) = Err(MBase(i),
STest(i)). The rule’s resubstitution error is esti-
mated by dropping the baseline sample SBase(i)
through it, and is denoted as ErrResub(i) =
Err(MBase(i), SBase(i)).

Two other error estimators are investigated
here – split sample and bootstrap – and neither
requires an independent test sample.

For split sample, we apply a randomized parti-
tion to sample SBase(i) to create a pair of sub-
samples SSplit1(i) and SSplit2(i), with the
proportion of observations in SSplit1(i) denoted
by p. We fit a prediction rule MSplit1(i) to the first
sample of the pair and calculate the rule’s error
by dropping the second sample through it. The
split sample estimate of error is denoted by
ErrSplit(i) = Err(MSplit1(i), SSplit2(i)).

For bootstrap, we draw an ensemble of boot-
strap samples SBoot(i,j) for j = 1,...,100 by sub-
sampling from SBase(i) with replacement, using
a sample size equal to SBase(i) (Figure 1, first row
of pink boxes). For each bootstrap sample
SBoot(i,j), its corresponding ‘out-of-boot’ sam-
ple SOOB(i,j) is the set of all observations in
SBase(i) not in SOOB(i,j) (Figure 1, second row of

pink boxes). We fit a prediction rule MBoot(i,j)
to bootstrap sample SBoot(i,j) and calculate its
error by dropping SOOB(i,j) through it. The
bootstrap estimate of error Err(i)Boot of rule
MBase(i) is the mean of Err(MBoot(i,j), SOOB(i,j))
over j = 1,...,100.

Thus, for a given model MBase(i) we have a
direct measure of true error ErrTrue(i) plus three
different types of error estimator: resubstitution
error ErrResub(i), split sample error ErrSplit(i), and
bootstrap error ErrBoot(i). The merit of each esti-
mator is quantified by its difference with respect
to true error: ErrTrue(i) - ErrResub(i) for resubstitu-
tion, ErrTrue(i) - ErrSplit(i) for split sample, and
ErrTrue(i) - ErrBoot(i) for bootstrap – with the best
estimators having the smallest difference. When
these differences are squared and averaged, we
generate the mean square error of each statistic as
an estimator of true error.

Machine learner
To construct prediction rules, we chose a tree-
based machine learner called stochastic gradient
boosting [9]. In brief, the method parameterizes
predicted outcome as an additive expansion in
which the basis functions are small trees. Boosting
retains all the advantages of single-tree methods
save for simplicity, but tends to produce stronger
predictive performance. The metaparameters we
used for boosting were 100 trees in a model,
shrinkage of 0.1, stochastic subsampling set at
60% of the sample, and tree size limited to two
splits. These values were chosen on the basis of
our past experience with this algorithm.

Data sets
Two data sets were used as the basis for (separate)
simulation experiments. They were chosen
because the underlying systems were known to
be relatively complex, and as sample sizes were
sufficiently large to permit the simulation design
we employed.

Proteasome data
The first data set comes from a study of the
proteasome, a complex of enzymes within cells
that breaks down proteins that have been
tagged for removal. Increased proteasome
action is thought to play a role in certain types
of cancer, and there is interest in studying pro-
teasome behavior in order to design anticancer
drugs that work by proteasome inhibition.
Experimental data were provided in the form of
a library of approximately 6000 tripeptide sub-
strates catalyzed by the proteasome. Response is
545



RESEARCH REPORT – Martin & Yu 

546
a quantitative readout of fluorescence that
occurs when 7-amino-4-methylcoumarin
(AMC) markers tagged to the substrates at one
end are cleaved by the proteasome enzyme.

Each substrate was annotated using 18 molec-
ular properties such as Van der Waal surface area,
total atom count, partition coefficient, and so
on. Each of these features was measured for the
substrate as a whole, as well as separately for its
three amino acid positions, giving a total of
4 × 18 = 72 inputs. The resulting proteasome
data are in the form of quantitative
structure–activity relationship (QSAR) data.

Antiplatelet data
The second data set is an antiplatelet survey con-
sisting of medical records from 585 subjects
admitted to hospital with a form of cardio-
vascular disease called non-ST elevation acute
coronary syndrome. The data were collected in
collaboration with MarketRx, Inc. (NJ, USA) to
better understand how patient characteristics
and other factors influence whether, when and
how patients receive various types of therapy.

A total of 25 mostly categorical inputs were
used, including patient demographics such as age,
gender and weight, risk factors such as diabetes,
clinical measures such as cardiac enzymes, the

length of time patients waited for treatment, and
whether or not patients received various kinds of
antiplatelet drugs. For the simulation, we chose a
binary variable for response that measured whether
or not the patient received a percutaneous coro-
nary intervention (PCI) procedure to remove
blockages in coronary arteries. The proportion of
patients receiving PCI was p(PCI = yes) = 0.53.

Results
Simulation experiments were conducted sepa-
rately for proteasome and antiplatelet data. In
both cases, we generated 1000 replicate baseline
samples SBase(i) in order to construct distributions
for estimators of true error, resubstitution error
and split sample error. Due to computational con-
straints, bootstrap analysis was limited to a subset
of 100 of the baseline samples, and for each of
these a bootstrap ensemble of 100 replicates was
generated (total of 10,000 bootstrap samples).

For split sample error estimation, we tried a
range of values of the splitting proportion p in
order to investigate the effect of allocating more
or less data to the training sample. The values
used were 0.2, 0.33, 0.5, 0.67 and 0.8.

For antiplatelet data, all sampling was
stratified on the response frequency
p(PCI = yes) = 0.53 in the original sample,

Figure 1. Experimental design for the simulation. 
 

We start by repeatedly sampling data from one of the listed studies (proteasome or antiplatelet) to create 
pairs of baseline and test samples (blue boxes). Prediction rules are fitted to baseline samples, and the error 
rate of each rule is estimated using either the baseline sample itself (resubstitution error), the corresponding 
independent test sample (direct estimate of true error), the ensemble of bootstrap samples (pink boxes), or 
the split-sample samples (not shown).

Defines populationSample S

x100–1000

Independent test samples

Baseline samples

S
Test

(i)

S
Base

(i)

x100

Bootstrap samples

Out-of-boot samples

S

S
OOB

Boot

(i,j)

(i,j)

Pharmacogenomics
Pharmacogenomics (2006)  7(4)



www.futuremedicine.com

Assessing performance of prediction rules in machine learning – RESEARCH REPORT
meaning we defined separate empirical distribu-
tions for patients who did and did not receive a
PCI to hold this frequency constant.

The following sample sizes were used. For
proteasome data, 2000 observations were allo-
cated to a baseline sample, and the remaining
4000 were put in its matching test sample. For
antiplatelet data, 300 observations were used for
baseline, and the remaining 285 for testing.
Baseline samples much smaller than 300 tended
to give relatively weak prediction rules that were
not useful for error comparison.

Results for proteasome data are shown in
Table 1  and Figure 2, and for antiplatelet data in
Table 2 and Figure 3. The figures show distribu-
tions for error differences as defined previously,
while the tables summarize these data in terms of
mean square error using the usual bias-variance
decomposition. This decomposition expresses
the mean squared error of an estimator (relative
to truth) as the sum of two terms: the estimator’s
variance, plus the squared distance between the
mean of the estimator and the statistic being esti-
mated. This second term is the square of the
bias; for the split sample estimator the bias is:

(2) bias(ErrSplit(•)) = mean(ErrTrue(•)) –
 mean(ErrSplit(•)) 

Several effects are apparent from Tables 1 and 2.
First, the qualitative behavior of the group of
estimators is strikingly similar for the proteas-
ome and antiplatelet data, despite the very differ-
ent nature of these two samples. Second, the
resubstitution estimator is strongly biased down-
wards, as has been described by other authors [2],
meaning it makes prediction rules appear better
than they really are. Bootstrap has the smallest
variance of any estimator (other than resubstitu-
tion), which it achieves by averaging estimates
over many replicates. Its bias is approximately
equal to split sample bias at p = 0.67, which is
consistent with the fact that the effective size of a
bootstrap sample is only 1–1/e ≈ 0.63 due to the

presence of duplicate observations (sampling is
with replacement). Note, however, that boot-
strap standard deviation is no more than half
that of split sample at this point.

For both types of data, we can quantify the
effect of sample size upon the bias and variance
(standard deviation) of the split sample estimator
by considering bias and variance as functions of
p, then using the data contained in Tables 1 and 2

to estimate rates of change with respect to this
parameter. For instance, the first-order, one sided
finite difference (a type of numerical derivative)
for standard deviation at p = q1 is:

(3) 

For both the proteasome and antiplatelet data,
the rate of change of the standard deviation of the
split sample estimator is greatest when p is large,
being over an order of magnitude greater than its
rate of change when p is small. In contrast, the
rate of change of the bias of this estimator is small-
est when p is large, being only half its size at small
p values. When p is large, the proportional change
in size of the test sample is greatest while that of
the training sample is smallest, and the converse is
true when p is small. We conclude from these
results that the dominant effect driving variance of
the split sample estimator is size of the test sample,
while the training sample size tends to control
estimator bias.

Conclusions
Performance estimation is a key, but often over-
looked aspect of machine learning. A number of
studies have described and compared the per-
formance of different error estimators [7,8,10,11];
however, our own experience is that differences
between competing approaches remain poorly
understood in practical terms. Simplicity often
seems to be the factor determining method
choice, not only because simple methods are

∂SD p( )
∂p

-------------------
p q1=

SD q1( ) SD q2( )–

q1 q2–
------------------------------------------=

Table 1. Comparison of different error estimators based on the proteasome 
data simulation.

Scheme Bootstrap Split sample Resubstitution

p = 0.2 p = 0.33 p = 0.5 p = 0.67 p = 0.8

Bias 11 62 37 20 10 -0.3 -70

SD 25 33 35 39 49 64 21

The prediction error data on which the above statistics are based were calculated as root mean square error, 
predicted versus observed response. p is the proportion of training observations used by the split sample method.
SD: Standard deviation.
547



RESEARCH REPORT – Martin & Yu 

548

Figure 2. Distributio
proteasome data. 
 

The graphs plot the error
estimator and i is the ith 
with Gaussian weighting
RMSE: Root mean square

-200 -100
0.000

0.005

0.010

0.015

Difference
easier to use, but also because researchers have
greater confidence in results generated by
methods in which inner workings are clear.

In the current study, we have attempted to
untangle some of the complexity surrounding error
estimation in a way that illustrates how various
error estimators compare in real-world situations.
Our findings were that the ever popular split sam-
ple approach is not optimal. In all cases studied,
the bootstrap estimator had smaller variance and
smaller bias (or nearly so). For binary response,
bootstrap bias may be reduced still further by
employing a bias correction such as 0.632+ [2]. We
decided against this additional step for the current
work because bootstrap bias was already low.

For any resampling approach, the user must
decide upon the relative effort spent training pre-
diction rules versus testing them, and to do this it
is helpful to understand the consequences of this

choice. As demonstrated with the finite difference
calculation of equation (2), the rate of change of
estimator variance experiences its sharpest increase
when testing samples become small (for example,
split sample designs with large p). On the other
hand, using a small training sample increases bias,
although the influence as measured by rate of
change is less. These results are consistent with
observed behavior of another kind of error estima-
tor, leave-one-out cross-validation. Leave-one-out
cross-validation uses the smallest possible test
samples (single points), and although bias is
almost zero, variance can be unacceptably high for
binary response data [2,4].

Our conclusion that bootstrap is superior to
the other estimators we examined is based on
data from only two studies. Nonetheless, we feel
the result is likely to be robust. First, the data
from these studies were incorporated into Monte
Carlo simulations rather than being analyzed as
single samples. Second, the data themselves were
quite different in terms of response, type of
inputs and sample size. Finally, the qualitative
behavior of the estimators for the two types of
data was highly similar.

Results consistent with those in the current
study have recently been reported in a study of
binary response data, using small sample sizes (as
small as 40 observations), a hybrid simulation
design similar to the one in the current study,
and where classification rules were generated by
performing feature selection as a disjoint, pre-
liminary step [8]. Bootstrap clearly outperformed
a split sample approach, and was among the best
of the range of estimators considered.

Other error estimators exist besides the ones
chosen in the current study, in particular cross-val-
idation approaches with or without repeated
choice of the randomized partition (some are dis-
cussed in [11,12]). There are important connections
between cross-validation and the sampling
approaches used in the current study. For example,
it has been shown that half-sample cross-validation
with repeated randomized partition has strong

ns for error estimators based on 

 difference ErrTrue(i) – ErrX(i) where X is the given 
sample. Densities were fitted using a kernel smoother 
 of neighboring points.
 error.

0 100 200

Bootstrap mean
Split sample p = 0.2
Split sample p = 0.33
Split sample p = 0.5
Split sample p = 0.67
Split sample p = 0.8
Resubstitution

 in RMSE compared with true error Pharmacogenomics

Table 2. Comparison of error estimators based on the antiplatelet data simulation.

Scheme Bootstrap Split sample Resubstitution

p = 0.2 p = 0.33 p = 0.5 p = 0.67 p = 0.8

Bias 1.4 4.8 33 1.9 1.0 0.3 -12

SD 1.8 3.3 3.3 3.5 4.3 5.8 1.7

The classification error data on which the above statistics are based were calculated as the percentage of 
observations classified incorrectly; units are % error.
SD: Standard deviation.
Pharmacogenomics (2006)  7(4)



www.futuremedicine.com

Assessing performance of prediction rules in machine learning – RESEARCH REPORT

Figure 3. Distributio
antiplatelet data.

-0.2 -0.1
0

4

8

12

Difference in clas
similarities to the bootstrap [4], in terms of theoret-
ical considerations, performance, and computa-
tional effort. Also, half-sample cross-validation
using only a single randomized partition is similar
to a split sample design with p = 0.5, the only dif-
ference being that cross-validation considers each
half sample in turn as the training sample, while
split sample chooses only one.

In a simulation-based comparison [2] of these
and other error estimators in the context of
binary response data, 0.632+ bootstrap per-
formed best overall, with some forms of cross-
validation also performing quite well. Split
sample designs were not tested.

Based on this material, our expectation is the
(k-fold) cross-validation with repeated randomized
partition and small to medium k would perform
similarly to bootstrap and out-perform the simpler
split-sample approach. Note that our motivation
for including split sample in the current study was
not that we felt it to be the most powerful repre-
sentative of available error estimators; rather, that
in our experience, it is most commonly used.

A possible limitation of the current study is
that results may depend, in part, upon the
machine learner used: stochastic gradient boost-
ing. Theoretically, gradient boosting is closely
related to random forest [13]. Both use trees as a
weak learner, and both generate an ensemble of
resampled data using a bootstrap. Gradient
boosting uses this ensemble to construct a func-
tional expansion using gradient techniques,
while random forest fits independent models to

replicates in the ensemble and then aggregates
them. Although random forest doesn’t normally
require an external estimate of error – since it
instead uses the bootstrap error estimate formed
automatically as the prediction rule is con-
structed – if an external estimate were required,
we would expect the results of the current study
to generalize to it. This is significant, because
ensemble-based techniques such as gradient
boosting and random forest have been shown to
be among the most powerful machine learners
available [6,7]. Whether the current results gener-
alized beyond this is the basis for future research.

Error estimation is only useful because it
helps to quantify our degree of belief in a final
model, the model that we use for future predic-
tion and for understanding a system’s behavior.
Such a final model is normally fitted to the
entire baseline sample. However, some research-
ers employ a split-sample approach from the
very beginning, reserving a portion of data
solely for model testing. This is akin to strate-
gies employed in some types of clinical trial and
it gives maximal confidence that there is no
‘cheating’ involved. However, the price paid is
high. When training of the final model is lim-
ited to a subset of the baseline data, model per-
formance will be significantly worse than that of
a model trained using the full, baseline data, a
consequence of loss of sample size.

The results of this research have been incor-
porated into best practices for our own laborato-
ries. For example, in a recent study of
toxicogenomics [Martin R, Barros S. Manuscript submitted]

we built classification rules to predict the toxic
potential of drug candidates early in the process
of pharmaceutical drug development. In order
to implement these analytical findings as a live
compound-screen, it has been essential to fully
and precisely understand the accuracy of predic-
tions made. We used bootstrap estimation to
quantify the operating characteristics of our tox-
icity classifiers, in order to have maximum con-
fidence that economic analyses that measured
likely impact of such a screen, and which were
dependent upon its performance, were accurate.
This research is ongoing.

Outlook
The complexity and volume of genomics data is
continuing to increase rapidly. For example,
toxicogenomics studies in our own laboratories are
currently based on microarray data with 9000 fea-
tures. Next-generation microarrays are now availa-
ble that increase feature availability to more than

ns for error estimators based on 

0.0 0.1 0.2

Bootstrap mean
Split sample p = 0.2
Split sample p = 0.33
Split sample p = 0.5
Split sample p = 0.67
Split sample p = 0.8
Resubstitution

sification error compared to true error
Pharmacogenomics
549



RESEARCH REPORT – Martin & Yu 

550
30,000, and are projected to increase further in the
future. An accompanying trend has been an
increase in data complexity. A decade ago, genom-
ics research was dominated by family-based link-
age and association studies, whose data consisted
of several hundred genetic markers plus a relatively
modest amount of clinical measures. As research
has shifted away from such positional cloning
work, data for genomics studies have broadened to
include gene expression and proteomics informa-
tion, and new data constellations are likely to arise

in the decade ahead. In our opinion, as these ana-
lytical challenges increase, so too will the need for
robust assessment of results and conclusions.

Acknowledgments
The authors thank Victor Farutin for his expert help imple-
menting stochastic gradient boosting. We also thank Archita
D'Silva from MarketRx, Inc., for providing the antiplatelet
survey data, and Tom Gant, Larry Dick, Chris Tsu, and Mark
Rice for providing the proteasome inhibition data. Finally, we
thank the reviewers for their constructive comments.

Highlights

• Machine-learning strategies are a standard approach for analyzing genomics data and for 
hypothesis generation.

• Confusion persists as to how to assess the prediction rules that result.
• Robust techniques are vital to quantify performance of the huge number of prediction rules 

being generated.
• Performance of prediction rules is normally assessed using their true error, but there are many choices 

for how this is estimated.
• Researchers favor simple error-estimation methods such as 'split sample' in which inner workings 

are clear.
• Four different error-estimation methods were compared using Monte Carlo simulation based on 

real data.
• In a variety of test situations, bootstrap was significantly more accurate than simpler methods such as 

split sample.
• Genomics researchers may be able to improve robustness of decision making by employing 

techniques such as bootstrap.

learning tool for compound classification 9. Friedman J: Greedy function 
Bibliography
1. Breiman L: Statistical modeling: the two 

cultures. Stat. Sci. 16, 199–231 (2001).
2. Efron B, Tibshirani R: Improvements on 

cross-validation: the 0.632+ bootstrap 
method. J. Am. Stat. Assoc. 92, 548–560 
(1997).

3. Hastie T, Tibshirani R, Friedman J: The 
Elements of Statistical Learning. Springer 
Verlag, New York, NY USA (2001).

4. Efron B: Estimating the error rate of a 
prediction rule. J. Am. Stat. Assoc. 78, 
316–331 (1983).

5. Svetnik V, Wang T, Tong C, Liaw A, 
Sheridan R, Song Q: Boosting: an ensemble 

and QSAR modeling. J. Chem. Inf. Model. 
45, 786–799 (2005).

6. Wu B, Abbott T, Fishman D et al.: 
Comparison of statistical methods for 
classification of ovarian cancer using mass 
spectrometry data. Bioinformatics 19, 
1636–1643 (2003).

7. Meyer D, Leisch F, Hornik K: The support 
vector machine under test. Neurocomputing 
55, 169–186 (2003).

8. Molinaro A, Simon R, Pfeiffer R: Prediction 
error estimation: a comparison of 
resampling methods. Bioinformatics 21, 
3301–3307 (2005).

approximation: a gradient boosting 
machine. Ann. Stat. 29, 1189–1232 (1996).

10. Hawkins D, Basak S, Mills D: Assessing 
model fit by cross-validation. J. Chem. Inf. 
Model. 43, 579–586 (2002).

11. Efron B, Tibshirani R: An Introduction to the 
Bootstrap. Chapman & Hall, New York, NY, 
USA (1993).

12. Shao J: Linear model selection by 
cross-validation. J. Am. Stat. Assoc. 88, 
486–494 (1993).

13. Breiman L: Random forests. Machine 
Learning 45, 5–32 (2001).
Pharmacogenomics (2006)  7(4)


